

Fundamentals of Search

The Inverted Index

Inverted Index with Stop Words

Inverted Index with Term Positions

Search Engines vs. Databases

Search Requires a Different Data Modeling and Access Paradigm

Traditional Databases Modern Search Engines Comments

Store Normalized Data in Tables Store Denormalized Documents Need to think differently about the
data model

Vertical Scaling Horizontal Scaling Solr is built for Hadoop-scale
Searches require Table Scan

(slows down dramatically as data
and access grows)

Get extremely fast, interactive
speeds on “big” data Optimized for information Retrieval

Does not analyze unstructured
text; slow at querying

Optimized for unstructured and
semistructured data Search-first NoSQL store

Results may be sorted by some
column Results ranked by relevance

Many ways to tune relevance in
order to provide powerful user

experiences

Different data model and horizontal scaling are characteristics of other modern
NoSQL databases (Cassandra, HBASE, Couchbase, etc.) but the other three elements

are unique to search engines

Solr Documents Do Not Follow the Traditional
Normalized Model

Solr Documents

• Does not give you a randomly
ordered set of results that
matched your query; scores
results and attempts to first
return items that are more likely
to be relevant/useful

• Not just “what matches user
query,” but “what is most likely
the thing the user wanted”

• Search is Recommendation 

Results Ranked by Relevance

Iterative Search App Development Model

Maintaining a Virtuous Cycle….

Deploy Adopt Evolve

…that helps customers grow along the Search Deployment Maturity Model

Early-Stage Knowledgeable Experienced Optimized

Business Driver Add Search to
Application

Improve KPI’s
(conversion, mean time

to resolution, etc.)

Underpin Core
Corporate Initiatives Competitive Advantage

Ownership Team Department Business Unit
Multiple BU’s

Corporate-Wide

Search Organization Individual(s) Team Competency Practice and Culture

Applications Keyword Search
Data Enrichment
Complex Queries

Multiple Data Sources/
Federated Search

Search as Experience:
Virtuous Cycle between

Users and Data

Scale Low Medium High Massive

Technology Adoption Add-on tool Key Part of Solution Pervasive in IT Stack Platform as a Service

Solr Accelerated
Rapid Search Application Deployment with

Lucidworks Fusion

Why Fusion?

Search is more than just a box.

personal.
contextual.
actionable.

Search makes data

Search is
everywhere.

ecommerce

log analysis

site search

compliance

enterprise apps

Secure access to all your data through one interface, empowering
everyone in your organization to access the data they need.

Search is the key to unlocking big data.

vSearch anything.

query

Traditional enterprise search
was all about the query.

Search can be smarter.

location search history query permissions context

Personal, contextual, relevant results: consumer-
like simplicity and power in the enterprise.

data enrichment

your business

your app

your data
machine learning

recommendations landing pages relevancy tuning
security

connector fram
ework signal processing

api reporting adm
in

Lucidworks Fusion
Everything your team needs to rapidly design
and deploy next-generation search apps to
your entire organization

Training Agenda and Learning Goals

• Solr based - supports multiple versions (4.4 and up, with a few exceptions)

• Security - content and connectivity control, integration with LDAP

• Signals - Search engine know thyself, and thy users

• Modification Pipelines - Input time and query time

• Connectors and crawlers - not as creepy as they sound

• Scales with SolrCloud and Zookeeper - keep your clouds in the sky and
your monkeys well-fed

• Built-in Log analysis - Index and report on your Fusion logs, server logs,
and other time series data

• Friendly Admin Interface - Makes everyone’s life easier

Lucidworks Fusion Overview

• Introductions

• Why Fusion; Training Goals

• Not your Father’s Solr

• Fusion and Solr Deployment

• Getting Started; Navigation Basics

• Fusion and Solr APIs

• How do I get data into Solr?

• Monitoring, Log Analytics and Dashboards

• How do I tailor my Search Results?

• How do I drive more powerful User Experiences?

• Summary, Resources, Feedback

Training Agenda

• This course intends to provide a strong foundation in Fusion. Students can use this
base to learn advanced concepts from Lucidworks blogs, documentation and
webinars

• At the end of this course you can use Fusion to:

• Create collections and modify their schemas

• Connect to multiple data sources and ingest content into Solr, modifying and
transforming data along the way

• Administer and monitor a Solr cluster; visualize time series data and build log
analytics applications

• Modify user experiences by tuning relevancy, modifying facets, boosting and
blocking documents, etc.

• Leverage signals to create contextual and personalized recommendations

• Easily build next generation search apps such as….

Building Powerful and “Antifragile” Search
Applications—Easily

Example Search Applications

Enterprise Search

Lucidworks Fusion connectors
processes documents and

sends to SolrCloud

Document storage and federated search

eCommerce: Search is Recommendation

Catalog

Signals

Pipeline

Your
App

Fusion

Log record search

Machine generated log records
are sent to Flume.

Flume forwards raw log record
to Hadoop for archiving.

Flume simultaneously parses out
data in record into a Solr document,

forwarding resulting document to Solr

Lucidworks Fusion Dashboards exposes real-time
statistics and analytics to end-users,

as well as full-text search

High volume indexing of many small records

Pipeline

Platform for Data-driven Applications
Data Access Layer for HDFS and NoSQL

Not your Father’s Solr

data enrichment

your business

your app

your data
machine learning

recommendations landing pages relevancy tuning
security

connector fram
ework signal processing

api reporting adm
in

Apache Solr—The
Open Core of Fusion
Most widely used search solution on the planet
True Open Source; Apache Governance Model
Your Data; Your Way; Any Time

• Full-text search with faceting; Near real-time indexing; Dynamic clustering;
Rich document (e.g., Word, PDF) handling; Database integration; Hit
highlighting; Geospatial search; Multiple language support; ….

• Distributed, Horizontally Scalable, Stable and Robust

• Search-first NoSQL store with Strong Analytics Capabilities

• Deep Paging

• Accurate Facets and Stats; Stats on Pivots (5.0)

• Easier to start-up; run as a service on Linux (5.0)

Why Solr?

Fusion and Solr Deployment

• Fusion makes Solr better!!

• Fusion works with your existing Solr
infrastructure - not tied to a single Solr
version

• Fusion can work with multiple Solr
instances/installs - supports Solr 4.4 and up

• Don’t have Solr yet? Fusion ships with Solr

Fusion Loves Solr

• Fusion leverages Solr in “cloud mode” and
Apache Zookeeper for scalability and
redundancy

• Fusion + Solr scale linearly with your data

• Our shard-splitting approach means greater
control over your scaling needs without having
to reindex

• Solr’s maturity, use of Zookeeper and extensive
testing minimizes data loss or split brain issues

Fusion Clusters and Scales

+

Interaction between Fusion, Solr, DataSources and Users

ZK 1

ZK …

ZK NCentralized
Config

Zookeeper

Billions of Docs

Millions of Users
iv

Fusion Services

Backend
Services

iv

Fusion Services

Backend
Services

…
P
r
o
x
y

REST

Leader
Election

Load
Balancing

ivShard 1 —
Replica

ivShard 1 —
Leader

ivShard 2 —
Replica

ivShard 2 —
Leader

Replication

Solr

…

Solr Web

Solr Web Solr Web

Leader
Election

Solr Web

Every component represented runs in its own JVM and
can be (and usually is) distributed across multiple servers.
Example deployments discussed in the following slides

Fusion’s Scalable, Distributed Service-Oriented Architecture

Billions of Docs

Millions of Users
iv

Fusion Services

Backend
Services

iv

Fusion Services

Backend
Services

…
P
r
o
x
y

REST

Service discovery and software
load balancing among Fusion
services happens in the proxy

ZK 1

ZK …

ZK NCentralize

Zookeeper
Services are registered
with ZK, discoverable by
each other and the proxy

Solr 1

Solr …

Solr N

Signals, search logs,
application logs and user
data is stored in Solr

Fusion API:
Backend Services

• Connectors
• Pipelines
• Aggregator
• Collections
• Recommender
• Scheduler
• Solr Proxy
• Metrics
• Configuration

Fusion Components
Lucidworks Fusion integrates many open source and proprietary components to
build a fault-tolerant, flexible search and indexing system.

Index and Search

API

UI

Connectors

Cluster Manager

The Fusion API is the heart of the Fusion deployment. All of the Fusion UI and
Connectors are controlled through the API, and all communication to Solr is
done via the Fusion Proxy which is part of the Fusion API

Basic indexing and searching is handled by the open source Apache Solr/
Lucene project. Your documents and queries will all eventually be directed to
Solr, after being processed and enhanced by Fusion

The Cluster Manager - The role of the cluster manager is to coordinate and
distribute the operations of the Solr and Fusion clusters. This is implemented
by the open source Apache ZooKeeper (ZK) project

The Fusion Connectors enables users to create and modify Fusion Datasources
to ingest data from many kinds of sources

The Fusion UI presents an intuitive UI to help users manage and monitor their
Fusion and Solr deployments

Deployment for Prototypes and Dev

The default Fusion deployment runs all
components on a single server, ideal for
testing and prototyping. 

In this deployment, Fusion still uses the
ZooKeeper cluster management service
as Fusion deploys in a single-server
“cluster”. 

Fusion is integrated with Solr and
ZooKeeper, storing Fusion index data in
Solr and Fusion configuration in ZK.

Server

API

UI

Connectors

Solr

Cluster Manager

2-Server Deployment to Test Clustering and Networking
In a 2-server deployment, the full Fusion+Solr
stack is deployed on the 2 primary servers, and
cluster management lives on its own,
independent hardware.

The hardware requirement for the ZK cluster
manager is minimal, 1 CPU core, 1GB memory.

In the event of the ZooKeeper cluster manager
failing, queries to Fusion till resolve, but no
further indexing is possible.

The Fusion stack has its startup configuration
modified to point at your external cluster
manager.

After initial startup, ZooKeeper informs Fusion of
the other server and they can begin
communicating.

Expansion is easy, as all new servers
automatically pull configuration data from
ZooKeeper.

Server 1

Cluster Manager

API

UI

Connectors

Solr

Server 2

API

UI

Connectors

Solr

ZK Server 1

Highly-Available 2-Server Deployment for Production

In production, cluster management is set up as
an “ensemble”, making both Fusion and
cluster management highly-available with no
single point of failure.

Fusion is configured with the addresses of all
ZK cluster management servers.

With failover for both ZK and Fusion, the
failure of any single server will not affect
functionality of the cluster, ensuring a highly-
available, fault-tolerant Fusion cluster.

Server 1 Server 2

ZK Server 1 ZK Server 3

ZK Server 2

Cluster management ensemble

Highly-Available N-Server Deployment for Production

Server 2 Server 3

In the N server deployment, you may
not need connectors and UI on every
server. Additional servers beyond the
first two only run Solr, and connect to
the ZooKeeper cluster management
ensemble just like the first two
servers.

ZK and Fusion automatically adds
these servers into the cluster, using
them to index and serve queries.

Server 1 Server N

ZK Server 1 ZK Server 3

ZK Server 2

Cluster management ensemble

Overlaying Multiple SolrCloud Clusters

Billions of Docs

Millions of Users
iv

Fusion Services

Backend
Services

iv

Fusion Services

Backend
Services

…
P
r
o
x
y

REST

Leader
Election

Load
Balancing

ZK 1

ZK …

ZK NCentralize

Zookeeper

Solr 1

Solr …

Solr N

ZK 1

ZK …

ZK NCentralize

Zookeeper

Solr 1

Solr …

Solr N

ZK 1

ZK …

ZK NCentralize

Zookeeper

Solr 1

Solr …

Solr N

ZK 1

ZK …

ZK NCentralize

Zookeeper

Same ZK ensemble can act
as the “brain” of Fusion and
Solr, or you can use different
ZK ensembles

How do I get started?

Download Fusion

• New users can download the Fusion
install bundle from
www.lucidworks.com - registration
required

• Existing Lucidworks support
customers can download from the
Support Portal - login required

http://www.lucidworks.com

Fusion Supported OSs

• Linux distributions that support Java 7
and up - 64 bit

• Windows 7, 8.1, Server 2008, and
Server 2012 - 32 and 64 bit

• MacOS 10.7.3 and up

• Download the .zip file for Windows and
the .tar.gz for everything else

Java Requirements

• Fusion like Solr is a Java-based application - requires a pre-installed JDK

• Lucidworks recommends Oracle’s JDK 1.7 - available here http://www.oracle.com/
technetwork/java/javase/downloads/jdk7-downloads-1880260.html

• Prefer Java 1.7u55 or higher to avoid a bug that impacts Lucene indexes (Java
1.7u25 or lower is also acceptable).

• Fusion also supports JDK 1.8

• JavaScript engines differ between JDK 1.7 and JDK 1.8. Java 1.7 comes with the
JavaScript engine "Rhino" from Mozilla, while Java 1.8 comes with JavaScript
engine "Nashorn" from Oracle. This difference may impact Fusion Javascript
stages. See https://docs.lucidworks.com/display/fusion/Javascript+Index+Stage

http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
https://docs.lucidworks.com/display/fusion/Javascript+Index+Stage

Hardware Requirements
• Fusion hardware requirements depend greatly on use case, index size (number of documents),

QPS (queries per second) and other factors

• Rules of Thumb:

• Dev/Testing Environment: minimum 12 GB RAM and 2 CPU cores

• Small Production: 16 GB RAM and 4 CPU cores

• Large Production: 32+ GB RAM and 8+ CPU cores

• Large production environments are likely to be made up of multiple servers with these specs

• These are generalizations. Contact your Lucidworks rep for specific recommendations based on
your use case, data load, etc.

• Disk size and number will vary greatly—suffice to say big enough to hold all your indexed data as
well any other BLOBS/lookups you wish to store in Fusion

Installing Fusion - Linux/OSX

• Expand Fusion .tar.gz file in the directory of your choice

• For Linux the recommended directory is /opt

you@ubuntu:/opt# tar zxvf ./fusion-1.2.0.tar.gz

• Same command on Mac

mymac:Applications joemac$ tar zxvf ./fusion-1.2.0.tar.gz

Starting Fusion
user@ubuntu:/opt# cd fusion/bin/
user@ubuntu:/opt/fusion/bin# ./fusion start
2015-02-05 01:11:04Z Starting Fusion Solr on port 8983
2015-02-05 01:11:34Z Starting Fusion API Services on port 8765
2015-02-05 01:11:40Z Starting Fusion UI on port 8764
2015-02-05 01:11:45Z Starting Fusion Connectors on port 8984

• Fusion take 5 ports. In addition to the 4 shown above, Zookeeper runs on port
9983

• See https://docs.lucidworks.com/display/fusion/Installing+Lucidworks
+Fusion#InstallingLucidworksFusion-RunningFusion for information on starting
individual services, how to use Upstart, and run on Windows

https://docs.lucidworks.com/display/fusion/Installing+Lucidworks+Fusion#InstallingLucidworksFusion-RunningFusion

Installing and Starting On Windows
• Unzip the package to the directory of your choice

• In the command prompt switch to the install directory and run “fusion.cmd start”
from the bin directory

Changing Ports - Fusion and Solr

• Edit $FUSION/bin/config.sh on Linux/
OSX

• Edit $FUSION\bin\config.cm on Windows

• $FUSION=/wherever you installed it

API_PORT=8765
API_STOP_PORT=7765
API_STOP_KEY=fusion

CONNECTORS_PORT=8984
CONNECTORS_STOP_PORT=7984
CONNECTORS_STOP_KEY=fusion

SOLR_PORT=8983
SOLR_STOP_PORT=7983
SOLR_STOP_KEY=fusion

UI_PORT=8764
UI_STOP_PORT=7764
UI_STOP_KEY=fusion

• Connect to  
http://<fusion_server>:8764
in a web browser

• First time logging in you set
the admin password and
agree to license terms

Connecting to Fusion

Navigation Basics and Administration

data enrichment

your business

your app

your data
machine learning

recommendations landing pages relevancy tuning
security

connector fram
ework signal processing

api reporting adm
in

Fusion Admin
Administer Solr and Fusion—create collections,
upload configs, modify schemas, create
datasources, modify pipelines and stages, start
and stop crawls, set roles and permissions, etc.

Confidential and Proprietary © 2014/15 Lucidworks

Admin UI - Collections

59

• Add and modify collections

• Give your collection a name and
click add

Confidential and Proprietary © 2014/15 Lucidworks

Collections - New Datasource

60

• You can easily add datasources to your
collection

• Select your type from the dropdown, this will
bring up the data source interface

Confidential and Proprietary © 2014/15 Lucidworks

Collections - Datasource UI

61

Confidential and Proprietary © 2014/15 Lucidworks

Web Connector

62

• Give your web crawler a unique ID

• Specify index pipeline

• Click Add item then Add datasource

Confidential and Proprietary © 2014/15 Lucidworks

Run Your Connector

63

Confidential and Proprietary © 2014/15 Lucidworks

• Specify a collection and search profile

Use Search to Test

64

Collection
Search
profile Keywords

Confidential and Proprietary © 2014/15 Lucidworks

• Edit and configure pipelines - index and query
• We will see more on Pipelines in the Pipelines section

Admin Interface - Pipelines

65

Confidential and Proprietary © 2014/15 Lucidworks

• What the
screenshot says

• We will see more
on this in the
Jobs/Scheduler
section

Admin Interface - Scheduler

66

Confidential and Proprietary © 2014/15 Lucidworks

• Edit Solr Config
Files without shell
access to Solr and
ZK client

Admin Interface - Solr Config Editor

67

Demo and Lab 1

Demo 1 and Hands-on Lab 1
• Demo Harbor Cruise of Fusion

• Hands-on Lab (can be combined with Lab2)

• Install Fusion (if necessary)

• Run Fusion

• Go to the Admin UI

• Review the various components of Fusion—we will cover them in detail soon

• Create a collection; crawl a website; view search results

Fusion and Solr APIs

data enrichment

your business

your app

your data
machine learning

recommendations landing pages relevancy tuning
security

connector fram
ework signal processing

api reporting adm
in

Endpoint/Service-Oriented REST API
• Fusion plus Solr APIs provide for a highly

configurable enterprise search platform
• Fusion UI abstracts complexity and makes it

easy to build apps on Solr
• Full security integrated
• Distributed & discovered by ZooKeeper
• Human-readable JSON payloads

List of Fusion APIs
	 •	 Blob Store API; Collection Features API; Collections API; Configurations API; Connector

Datasources API; Connector History API; Connector JDBC API; Connector Jobs API; Connector
Plugins API; Connector Status API; Connectors Crawl Database API; History API; Index
Pipelines API; Index Profiles API; Index Stages API; Nodes API; Query Pipelines API; Query
Profiles API; Query Stages API; Realms API; Recommendations API; Reporting API; Roles
API; Scheduler API; Search Cluster API; Sessions API; Signals Aggregator API; Signals API; Solr
and SolrAdmin APIs; Stopwords API; Synonyms API; System API; Usage API; User API 

• Everything in the Fusion UI uses an API. You can access extended functionality by directly
using the REST API. See: https://docs.lucidworks.com/display/fusion/REST+API+Reference

• Introspect API lists all available REST APIs and their endpoints, along with supported
methods and any applicable path/query parameters. Usage: curl -u user:pass
http://localhost:8764/api/apollo/introspect

https://docs.lucidworks.com/display/fusion/Blob+Store+API
https://docs.lucidworks.com/display/fusion/Collection+Features+API
https://docs.lucidworks.com/display/fusion/Collections+API
https://docs.lucidworks.com/display/fusion/Configurations+API
https://docs.lucidworks.com/display/fusion/Connector+Datasources+API
https://docs.lucidworks.com/display/fusion/Connector+History+API
https://docs.lucidworks.com/display/fusion/Connector+JDBC+API
https://docs.lucidworks.com/display/fusion/Connector+Jobs+API
https://docs.lucidworks.com/display/fusion/Connector+Plugins+API
https://docs.lucidworks.com/display/fusion/Connector+Status+API
https://docs.lucidworks.com/display/fusion/Connectors+Crawl+Database+API
https://docs.lucidworks.com/display/fusion/History+API
https://docs.lucidworks.com/display/fusion/Index+Pipelines+API
https://docs.lucidworks.com/display/fusion/Index+Profiles+API
https://docs.lucidworks.com/display/fusion/Index+Stages+API
https://docs.lucidworks.com/display/fusion/Nodes+API
https://docs.lucidworks.com/display/fusion/Query+Pipelines+API
https://docs.lucidworks.com/display/fusion/Query+Profiles+API
https://docs.lucidworks.com/display/fusion/Query+Stages+API
https://docs.lucidworks.com/display/fusion/Realms+API
https://docs.lucidworks.com/display/fusion/Recommendations+API
https://docs.lucidworks.com/display/fusion/Reporting+API
https://docs.lucidworks.com/display/fusion/Roles+API
https://docs.lucidworks.com/display/fusion/Scheduler+API
https://docs.lucidworks.com/display/fusion/Search+Cluster+API
https://docs.lucidworks.com/display/fusion/Sessions+API
https://docs.lucidworks.com/display/fusion/Signals+Aggregator+API
https://docs.lucidworks.com/display/fusion/Signals+API
https://docs.lucidworks.com/display/fusion/Solr+and+SolrAdmin+APIs
https://docs.lucidworks.com/display/fusion/Stopwords+API
https://docs.lucidworks.com/display/fusion/Synonyms+API
https://docs.lucidworks.com/display/fusion/System+API
https://docs.lucidworks.com/display/fusion/Usage+API
https://docs.lucidworks.com/display/fusion/User+API
https://docs.lucidworks.com/display/fusion/REST+API+Reference
http://localhost:8764/api/apollo/introspect

REST API Examples

• curl -X POST -H 'Content-type:application/json' -d
'[{"params": {"query": "Televisiones Panasonic 50
pulgadas", "filterQueries": ["cat00000", "abcat0100000",
"abcat0101000", "abcat0101001"], "docId": "2125233"},
"type":"click", "timestamp": "2011-09-01T23:44:52.533000Z"},
{"params": {"query": "Sharp", "filterQueries": ["cat00000",
"abcat0100000", "abcat0101000", "abcat0101001"], "docId":
"2009324"}, "type":"click", "timestamp":
"2011-09-05T12:25:37.420000Z"}]' http://localhost:8764/api/
apollo/signals/docs?commit=true

Send
two signal events

to record user
clicks

http://localhost:8764/api/apollo/signals/docs?commit=true

More REST API Examples
Upload a postgres driver to be used by a

collection named docs

Create a new role to allow access to the Admin UI and
full control over role definitions and user accounts

curl -u user:pass -X POST --form file=Create a new role to allow access to the Admin UI and
full control over role definitions and user accounts@/path/postgresql-9.3-1101.jdbc4.jar
http://localhost:8764/api/apollo/connectors/plugins/lucid.jdbc/resources/jdbc?collection=docs

curl -u user:pass -X POST -H 'Content-type: application/json' -d '{"name":"userAdmin",
"desc":"Gives user update access only", "permissions":["users, roles:*"], "extends":["ui-
user"]}' http://localhost:8764/api/roles

http://localhost:8764/api/apollo/connectors/plugins/lucid.jdbc/resources/jdbc?collection=docs
http://localhost:8764/api/roles

How do I get data into Solr?

data enrichment

your business

your app

your data
machine learning

recommendations landing pages relevancy tuning
security

connector fram
ework signal processing

api reporting adm
in

Connector Framework
• Backend service, scalable, distributed, load

balanced
• 30+ out-of-the-box connectors; more added

every release
• Powerful framework makes it easy to connect to

additional data sources

•Within Fusion, a datasource is used to create a specific
connector instance that is able to connect to a defined
repository and collect content for indexing via an index
pipeline.

•Datasources are specific to a collection.

•An index pipeline defines how content is indexed. Every
pipeline is made up of a number of stages to perform certain
types of transformations or processing on each incoming
document.

•Index pipelines and stages are not specific to any particular
collection and may be reused across multiple datasources
and/or collections.

•Datasource definition associates a specific index pipeline
with the datasource

Connectors, Datasources and Index Pipelines

Lucidworks Fusion
connectors
extract data

30+ out-of-the-box
Content Repositories

Supported

Data is transformed in
configurable, scalable

index pipelines

• Database: Couchbase, MongoDb, JDBC

• Filesystem: DropBox, Local, Box.com, Google Drive, FTP, HDFS, S3 Hadoop FS,
Windows Share, S3, SolrXML

• Hadoop Cluster: Hortonworks, Cloudera, MapR, Pivotal, Apache Hadoop 1 and 2

• Push: Content pushed to Solr

• Repository: Sharepoint, JIRA, Azure Blob, Azure Table, Solr Index, Subversion, Drupal
(1.3) and Github (1.3)

• Script: Javascript

• Social: Jive, Slack, Twitter Search, Twitter Stream

• Web: Anda

Out-of-the-box Connectors/DataSources

• The definition of a
datasource includes several
details, including:

• Connector plugin to use

• Specific plugin type

• Collection to which
documents are indexed

• Index pipeline used

• Information on how to
connect to the repository
and navigate the content.

DataSource Definition

• Transform documents that flow
through connector

• Separating this from Solr provides
enormous flexibility

• Crawling and parsing eat
resources. Complex computations
and lookups on external sources
(which load network) can be
separated from the Solr Cluster

• Connectors can round-robin
between instances

• Easier to maintain and upgrade

Index Pipelines

• Field Mapping Stage: powerful ability to do advanced
mapping of fields from incoming documents to
defined fields that exist in the schema.

• Multi-value Resolver: resolve multiple field values into
a single value based on a set of pre-defined rules
(PICK_MAX, PICK_FIRST, etc.)

• OpenNLP NER Extractor uses Apache OpenNLP
project to extract entities from documents according
to pre-trained models stored in Fusion’s BLOB store.

• Indexing RPC Stage allows calling an external service
and merging results retrieved from that service with a
document being processed by the pipeline. Calls to
the external system are made for each document as it
is being processed in the pipeline.

Index Pipeline Stages
Fusion ships with many out-of-the-box
stages that can be used to quickly
build and configure your own pipelines

http://opennlp.apache.org/

• Regular Expression Extractor stage type allows
extracting entities from documents based on matching
regular expressions, and copy them to another field
defined in the properties.

• Regular Expression Filter allows removing a field
based on data found in the field; this filter will ensure
the data will not find it's way into the index.

• Apache Camel Pipeline stage allows escaping from the
pipeline, perhaps to integrate a processing stage in
another app, and then returning documents back to the
pipeline.

• Apache Tika Parser index stage type includes rules for
parsing documents with Apache Tika. Fusion uses Tika
v1.6; this stage added the ability to parse CSV or TSV
files and index rows of these files as individual
documents.

Index Pipeline Stages—continued

http://tika.apache.org/

Javascript Stage—Swiss Army Knife
Fusion uses Javascript for running arbitrary scripts. Javascript index stage allows you to run JavaScript functions on your content. When
indexing, this may allow you to add or remove content that can't be added with any other available option. Among other things,
developers have used this to dedupe, remove disclaimers from emails, conditionally process documents based on datasource, and so on.

You can leverage Java Libs. You can also compile your own generic logic in Java and make them available to Fusion. This provides great
programming flexibility.

Fusion’s In-built Search UI
Accessible from the Fusion Launchpad

Demo and Lab 2

• Demo key out-of-the-box index pipeline stages and the
transformation of documents in a pipeline

• Lab: Create a new collection and follow the steps in http://
lucidworks.com/blog/noob-notes-fusion-first-look/ to index the
Medline dataset. Use the Fusion Search UI to explore your results.

• Challenge lab (optional) If on AWS, or if there is good network to
connect to a DB on AWS, also connect to and index from a
database.

Demo and Lab 2

http://lucidworks.com/blog/noob-notes-fusion-first-look/

Monitoring, Log Analytics and Dashboards

data enrichment

your business

your app

your data
machine learning

recommendations landing pages relevancy tuning
security

connector fram
ework signal processing

api reporting adm
in

Reporting and Dashboards
All system metrics and search metrics, clicks and
other similar events from external apps, and signals
extracted by event processing are stored in Solr

Fusion provides powerful, configurable visualization
capabilities that can be used to analyze any time
series or non-time series data, including Solr and
Fusion logs

• When creating a collection,
or editing its parameters,
we can turn on search logs.
If turned on, search logs
are indexed to a collection
“<collection_name>_logs”

• Fusion/Solr system logs are
stored in a system
collection named “logs”

The “_logs” collections

• Contains key parameters of user searches on <collection_name>, such as query term, time taken
to execute query, number of hits, etc. By analyzing this, search admins and content creators can
understand whether they are providing a responsive interface that is serving relevant results.

Content of <collection_name>_logs collection

• Contains details of all system events on Fusion

Content of system “logs” collection

• Fusion API provides many interesting reports on the searches performed against a collection

• If searchLogs is enabled for a collection, the following reports are available through the reporting API

• Get a List of Available Reports

• Find Queries with Less Than 'N' Results

• Get a List of the Top Queries

• Get a List of Most Popular Terms

• Get a List of Most Clicked Documents

• Get a Histogram of Query Times

• Get a Date Histogram

• EXAMPLE: curl -u user:pass -X POST -H 'Content-type: application/json' -d
'{"n":1}' http://localhost:8764/api/apollo/reports/demo/lessThanN gives us all
queries against the collection “demo” that returned less than 1 (i.e. zero) results

The Reporting API

http://localhost:8764/api/apollo/reports/demo/lessThanN

• Integrates the popular open source
visualization tool for Solr, Banana
(which in turn is a fork of Kibana)

• Dashboards layouts are JSON
objects that are stored in Solr

• Visualize the “_logs” collections, as
well any other time series or non
time series data that you choose to
load into Solr

Fusion Dashboards

How do I Tailor Search Results?

data enrichment

your business

your app

your data
machine learning

recommendations landing pages relevancy tuning
security

connector fram
ework signal processing

api reporting adm
in

Fusion and the User Experience
• Modify queries and result sets to help users ask

more interesting questions of Solr and get
relevant, actionable results

• Capture user behavior, trends and other
events, and use it to drive relevance

• Customize the user experience based on
query, user characteristics, context, etc.

Query Pipelines and Relevancy Workbench

• Query pipelines are similar in concept to Index
pipelines; the former transform queries and query
results during searching, while the latter modify
documents while indexing

• Advantages of maintaining query and result
modifications within Fusion query pipelines

• Scalability, Distributed Deployment and Load
Balancing as part of the Fusion Backend API

• A/B and Multivariate testing—required while tuning/
evolving your search application—made easy

• Ease of maintenance (your front-end app need not
change when your query transformation logic
changes)

Modifying User Queries and Result Sets

• Set Query Params provides a generic way to specify any Solr
query parameter.

• Facet stage is used to define a facet.

• Recommendations Boosting, Boost Documents, and Block
Documents stage types provide document boosting and
blocking capabilities.

• Recommendations boosting is based on aggregated signals
(more on this later), while other two allow defining document
boosts/blocks based on the search terms entered.

• SubQuery Stage: Solr query to another collection. Returned
results can be used to join results or boost main results.

• Rollup Aggregator: Rollup stage to aggregate Solr results in the
format of List<DocumentResult>. Most commonly used for
advanced boosting based on signals, which is performed by the
Advanced Boosting Stage.

Out-of-the-box Query Pipeline Stages

• Landing Pages: customize landing pages
based on search term. Does not do a redirect,
just supplies a URL to the calling application.

• Logging stage writes query parameters to the
log.

• Javascript stage: general transformations.
Examples include best bets, forcing exact
matches, combining boosts in interesting
ways, etc.

• Security Trimming: adds capability to apply
security restrictions found by crawls to
queries as they are being processed.

More Query Pipeline Stages

• In Fusion, query and index pipelines are not connected to a specific collection by default.

• Provides a great degree of flexibility —pipeline can be created once and re-used in several collections.

• However it does add some complexity in terms of using a pipeline with a collection.

• Sometimes, for example while using a SolrJ-based push connector (using SolrJ), we need to explicitly tie a pipeline to a
collection.

• Fusion supports a concept called profiles that provide a many-to-many mapping between collections and pipelines.

• Profiles serve as aliases to a pipeline. Your apps can send docs to one alias and you can change the pipeline and
collection that the alias is associated with. That way your front-end apps need not change, you can modify search
behavior my modifying the pipeline associated with a profile.

• Example: curl -u user:pass -X POST -H "Content-Type: application/vnd.lucidworks-
document" -d '[{"id": "myDoc1","fields": [{"name":"title", "value":"My first
document"},{"name":"body", "value": "This is a simple document."}]},{"id":
"myDoc2","fields": [{"name":"title","value": "My second document"},{"name":"body",
"value": "This is another simple document."}]}]' http://localhost:8764/api/apollo/
collections/docs/index-profiles/testProfile/index

• Sends documents to a profile named testProfile.

Query and Index Profiles

• Tune your search results by comparing query pipelines and editing them as necessary

Relevancy Workbench

Demo and Lab 3

• Demo

• Showcase Fusion dashboards, query pipelines and relevancy workbench

• Hands-on Lab (can be combined with Lab 4)

• Import a product catalog (from “csv” or XML)

• Use Fusion UI and show simple the effects of configuring query pipeline stages (Facet, Set Query Params)

• Use Global sources as an example of query pipelines with Javascript stages

• Use relevancy workbench with two query pipelines defined above to compare results

• Set up a signals collection, create an index profile that points to it and index signals by pushing to that
profile (using logstash say. Fusion 1.3 should have a logstash connector)

• View it with a dashboard provided

• Hand-out Feedback Forms

Demo and Lab 3

How do I drive more powerful user experiences?

data enrichment

your business

your app

your data
machine learning

recommendations landing pages relevancy tuning

security

connector fram
ework signal processing

api reporting adm
in

Fusion of Search and Recommendations
• Fusion provides key components and services

required to build analytics and recommender
systems—such as index pipelines, query
pipelines, pre-configured pipeline stages and
powerful aggregations/signal processing
capabilities

Events Processing and Signals Extraction

• Event: A data point or measurement with an associated timestamp (and
location)

• Examples: User query, click, add-to-cart, buy, CDR (call data record),
sensor data for a given moment in time (eg. temperature reading at
0800:00:00UTC in SFO), etc.

• Time Series: A sequence of events (data points), with a natural
temporal ordering. Observations close together in time will be more
closely related than observations further apart

• A set of query or click log records from a search engine e.g. a
“clickstream,” a set of medical claims with claim start dates, a set of
CDR data, etc.

• Streams: On-going time series with no defined end-point or date

• Signal: a function that conveys information about the the behavior or
attributes of some system or phenomenon

• For example, a rising qps (queries-per-second) and a corresponding
rise in query response times may indicate the need for more
hardware; increased call durations may indicate the need to add
cell-tower capacity; the number of searches for the word “flu” or
“influenza” in a region might indicate an increased incidence of
influenza in that region

Terminology

• In Fusion, we have tended to use events and signals interchangeably in the product and
documentation

• An event is almost always a signal in the sense that it conveys information about some
system or phenomenon

• Some events are highly significant in themselves (for example a syslog record saying
memory utilization is 100%, or a firewall log record indicating a breach)

• However, many signals are computed by analyzing a collection of events

• Aggregation and analysis of events and event streams typically extracts signals that
contain more information than the individual events themselves

• Example: it is interesting to know that one user searched for “tablet” and clicked on the
new iPad; it is far more interesting and actionable if we learnt that 80% of the users who
searched for “tablet” clicked on the new iPad). The latter is “actionable” in that we could
promote (boost relevancy) of the iPad to all users who searched for “tablet”

Evolving Concepts

• Index pipelines are used to process event streams
at ingestion time

• Solr stores large quantities of events and signals,
and provides a number of on-the-fly analysis and
aggregation capabilities (facets, stats, pivot facets,
stats on pivots, etc.)

• Fusion API extends Solr’s analysis capabilities
through its aggregations API; used to process large
sets of events, extract signals and store these
signals in Solr

• Query pipelines leverage raw and aggregated data
in Solr to tune relevance and the user experience

• Overall, Fusion enables you to ask more interesting
questions of your data and receive timely,
predictive and actionable information

Key Fusion/Solr Components for Driving Powerful User Experiences
and Presenting Actionable Information

• Events and signals may need to be aggregated in
order to be used for analysis, recommendations,
etc.

• Aggregator Functions: arithmetic, string, collection,
statistical, logical, scripting and special functions

• Sum, sumOfSquares, mean, min, max, count,
decay_sum, etc.

• Cat, split, replace, etc.

• Collect, discard, etc.

• Variance, stddev, cardinality, skewness, kurtosis,
quantiles, topK, covariance, correlation, sigmoid,
etc.

• Modify and define aggregation functions using
Javascript

Aggregations

Weighted
sum of clicks with time decay

366 users clicked on this particular
document (docId=1232447) after searching for

“beats”

Search term

• Scheduler API/service allow you to execute any
Fusion service, any Solr request, or any other
HTTP request on a defined timetable

• Scheduler service does not in itself execute any
business logic

• Defines start time and repeat interval, and an
address to an endpoint that will perform the
requested actions

• Examples:

• Run a Solr query at a specified time every day

• Define a datasource to be re-crawled once a
week

• Define a periodic aggregation of clickstream
events

Scheduler

How do I build Recommender Systems?

• Textbook definition: “Software tools and techniques
providing users with suggestions for items a user
may wish to utilize.”

~Ricci et al., Recommender Systems Handbook.
Springer, 2011.

What is a Recommender System?

• Does not give you a randomly
ordered set of results that
matched your query; scores
results and attempts to first
return items that are more
likely to be relevant/useful

• Not just “what matches user
query,” but “what is most likely
the thing the user wanted” 

Search is a Recommendation Problem

• Recommendation systems
generally query an index of
possible items in order to find
those items that are a best match

• Usually involves storing a large
sparse matrix and retrieving
quickly

• Search engine plus associated
processing provides a powerful,
scalable, performant
recommender system

Recommendation is a Search Problem

• In the traditional view, search
is generally “explicit” (i.e.
requires user input) while
recommendations are usually
“implicit” (automatically
derive or assume some user
intent)

• Fusion provides the tools to
flexibly combine
recommendations and search

Fusion of Search and Recommendations

• Without recommendations, top ranked result for the search
“ipad” is an iPad case, because the term appears in the title and
frequently in the description. However, when we use click
boosting, the most clicked on item, a white iPad, rises to the top.

• Click boosting (“users who searched for this item tended to
click on …) achieved as follows:

• Index incoming stream of click events (sent by the web
application) to a “signals” collection (typically named
“<collection_name>_signals”

• Periodically aggregate “signals” collection on docId’s and
queries and store in aggregation collection. The
aggregation function could use a weighted sum, with the
weights calculated from a half-life parameter that models
the time-decay in the importance of a click (more recent
clicks are weighted more than older clicks)

• Build a query pipeline that looks up the aggregated
collection to get most frequently clicked items for the query,
and uses this to add boosts to the raw query

• Associate the query pipeline to a collection and direct all
application searches to the endpoint representing that
query profile

Click Boosting in Fusion

Collection containing
product catalog

Associated events/
signals and
aggregation
collections

Query Pipeline
with Click Boosting

• Non-personalized: same for everyone
• Editor's picks; most popular; trending now (simple but often very effective)

• Contextual: based on what the user is doing right now, but not
looking at past behavior
• "Users who viewed this item also viewed..." (or “ user who bought this item also bought…”, etc.);

click boosting; similar searches ("users who searched for this also searched for…")

• Sometimes called “semi-personalized” or “ephemeral” recommendations in the literature

• Personalized: uses the current user's history to generate
recommendations
• "Recommended for you”; "based on your shopping history”

Types of Recommendations

• Non-personalized
• Boost stage

• Aggregate on doc ID, then query the aggregation collection directly

• Contextual
• Click boosting (subquery + rollup + boost)

• Aggregate on doc ID and <context>, then query the aggregation collection

• Click boosting with context

• Personalized
• Aggregate on user ID and content attributes, then query (or boost using) the aggregation collection

• Simple collaborative filter (with more coming soon!)

Implementing Recommendations in Fusion

• Your need to track events (clicks, buys, add-to-
cart, up-vote, rating, document views, etc.) and
send them to Fusion

• Need sufficient information to implement a particular recommender

• For contextual recommendations, need to capture and send context

• For personalized recommendations, you need to reliably track users
and send user information

• More expensive at query-time
• You may need to make multiple queries and some calculations in

the query pipeline (true of most recommender systems)

• Choose the Aggregation Intervals Wisely
• Expensive operation; match the scheduled aggregation interval to

the time it takes for user patterns to change

• “Differential” calculations available for certain types of aggregations

• Cold Start
• If the site has been in existence for some time, we have successfully

used existing clickstream logs, even if they are old

Implementation Considerations

Without
recommendations, a
search for “spark plug”
brings up spark plug
wires and accessories

With recommendations, a
search for “spark plug”
brings up spark plugs, which
are items that users actually
clicked on after their search

Demo and Lab 4

• Build a simple recommender using click boosting. Need to use
aggregator and query pipelines. Show results in relevancy
workbench using two query pipelines, one default and one with the
recommender. Also view in the Search UI

• Homework: Build a recommender that uses context (such as user
device, age, gender) to customize results

Demo and Lab 4

Summary, Resources and Feedback

• Introductions

• Why Fusion; Training Goals

• Not your Father’s Solr

• Fusion and Solr Deployment

• Getting Started; Navigation Basics

• Fusion and Solr APIs

• How do I get data into Solr?

• Monitoring, Log Analytics and Dashboards

• How do I tailor my Search Results?

• How do I drive more powerful User Experiences?

• Summary, Resources, Feedback

Training Summary

Your Feedback is Important to Us

• Solr: http://lucene.apache.org/solr

• Company: http://
www.lucidworks.com

• Blog: http://www.lucidworks.com/
blog

• Fusion: http://www.lucidworks.com/
products/fusion

• Help: https://
docs.lucidworks.com/display/
fusion/Lucidworks+Fusion
+Documentation

Resources

http://lucene.apache.org/solr
http://www.lucidworks.com
http://www.lucidworks.com/blog
http://www.lucidworks.com/products/fusion
https://docs.lucidworks.com/display/fusion/Lucidworks+Fusion+Documentation

Acknowledgements

• Material drawn from presentations/blogs/articles/documentation
authored by Grant Ingersoll, Cassandra Targett, Mitzi Morris, David
Arthur, Matt Hoffman, Jim Walker, Yann Yu, Matt Mitchell, Evan Sayer,
Evan Pease, Fran Lukesh, Andy Wibbels, Marcelline Saunders, Drew
Oetzel, Ravi Krishnamurthy and many others….

Contributors

Fusion Security (Optional)

Topics
Authentication
Authorization
Permissions
Roles
Admin UI
Known Issues
Roadmap / Fusion 1.3

Authentication

login request request handler

http-auth
adapterBasic POST

realm
adapter

ldap

native

authenticator

valid
username
password?

HTTP 401 HTTP OK

Authentication

login request request handler

http-auth
adapterBasic POST

realm
adapter

ldap

native

authenticator

valid
username
password?

HTTP
401 HTTP OK

HTTP Basic -- credentials sent with every request. 
Response is either 401 or service-method response.

curl -u user:pwd localhost:8764/api/apollo/collections

Authentication

login request request handler

http-auth
adapterBasic POST

realm
adapter

ldap

native

authenticator

valid
username
password?

HTTP
401 HTTP OK

POST -- credentials sent in HTTP POST only once (session).
Response is either 401 or 201 with cookie headers.

curl -c cookies.txt -H 'Content-Type: application/json'
-X POST localhost:8764/api/session -d
'{"username": "...", "password": "..."}'

Authentication

login request request handler

http-auth
adapterBasic POST

realm
adapter

ldap

native

authenticator

valid
username
password?

HTTP
401 HTTP OK

Subsequent requests must send cookies:

curl -b cookies.txt -X GET localhost:8764/api/apollo/
collections

idle session expiration ~ 15 mins
absolute session expiration ~ 45 mins

Authentication

login request request handler

http-auth
adapterBasic POST

realm
adapter

ldap

native

authenticator

valid
username
password?

HTTP
401 HTTP OK

Once the request handler successfully processes the request,
the authenticator attempts to locate the user in a configured
realm.

If a realmName param is provided in the request, the
authenticator will use this as the realm. Otherwise the native
realm is used.

Authentication

login request request handler

http-auth
adapterBasic POST

realm
adapter

ldap

native

authenticator

valid
username
password?

HTTP 401 HTTP OK

When a user has been successfully retrieved from a realm, a
password-hash comparison is performed. Passwords are
hashed using a strong (bcrypt) function.

HTTP OK

Authorization

determine API
service method
being requested

request authenticated?

no

yes

service
discovery

query user record

users

authorization
check via user
permissions

user has
access?

HTTP 403

HTTP 401

Authorization

determine API
service method
being requested

request authenticated?

no

yes

service
discovery

query user record

users

authorization
check via user
permissions

user has
access?

HTTP OKHTTP 403

HTTP 401

Authorization

determine API
service method
being requested

request authenticated?

no

yes

service
discovery

query user record

users

authorization
check via user
permissions

user has
access?

HTTP OKHTTP 403

HTTP 401

Authorization

determine API
service method
being requested

request authenticated?

no

yes

service
discovery

query user record

users

authorization
check via user
permissions

user has
access?

HTTP OKHTTP 403

HTTP 401

● uses Apache Shiro library
● a user can have many permissions
● permissions describe what a user can do, not what a user can’t do
● permissions map directly to service methods and HTTP verbs

Permissions

Permission Structure

service:method:ID

Permission Structure

collections:method:ID

The service component of a permission maps
directly to an Apollo service name.

Permission Structure

collections:getCollection:ID

The method component of a permission maps
to either an HTTP verb (#GET,#POST etc.) or
an explicit service method (getCollection etc.).

Permission Structure

collections:getCollection:foo

The ID component of a permission maps to an
instance of a resource, represented by the
service.

Permission Structure

collections:getCollection:foo,logs

Permissions components can have multiple
values

Roles

● Unique name
● Named sets of permissions
● Roles can inherit from other roles, but

can’t override permissions
● Users link to a role to inherit role

permissions - no overrides

Admin UI

● Users and roles CRUD UI
● Role names are used for lightweight UI

authz

Known issues/limitations

● API list responses aren’t authz filtered
● Admin UI authorization is hardcoded to

preset list of role names, not flexible

Roadmap / Fusion 1.3
● Bug fix for list filtering
● Introduce new user/role permissions for Fusion UI “apps” (search,

collections, relevancy workbench etc.)
● Admin UI admin able to assign UI app permissions to users/roles
● Possible high level approach for dealing with authz: resource based

(collections) in addition to API (existing)
● Kerberos
● Solr proxy authz (can query, delete, optimize, commit etc.)

Demo and Lab 5 (Optional)

• Create 2 or more collections with different schemas, datasources
and data. You can use the collections created in previous labs or
quickly create 2 new collections and crawl two different websites.

• Create a user who can search one collection and not the other.

• Create a user who can administer one collection and not the other.

Lab 5 (Optional)

